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Individual recognition skills of conspecifics living in complex and fluid animal societies, such as that of delphinids, are

important survival advantages, since they allow identifying potentially aggressive conspecifics, kin, mates, and allies

(Bruck, 2013). Yet, these skills are the key to maintaining both social cohesion and hierarchy, since they allow recip-

rocal altruism and social threat assessment, in addition to providing reproductive advantages by avoiding inbreeding

(Axelrod & Hamilton, 1981; Sayigh et al., 1995; Smuts et al., 1987).

Dolphins use personalized vocalizations, known as signature whistles (SW), which are emitted as repetitive

patterns to transmit the senders' identity to their surroundings (Caldwell & Caldwell, 1965). They are individually dis-

tinct, frequency-modulated, narrow-band, defined as the predominant whistle contour produced when a dolphin is

isolated from conspecifics. Moreover, they are developed by these animals during their first months of life, and they

get crystallized overtime (Bruck et al., 2022; Caldwell & Caldwell, 1965; Janik & Sayigh, 2013).

Individual recognition mechanisms have played a key role in odontocete ecology. However, information about

SW derives mostly, from the common bottlenose dolphins (Tursiops truncatus; Bruck et al., 2022; Caldwell &

Caldwell, 1965; Caldwell et al., 1990; Gridley et al., 2014; Janik & Sayigh, 2013; Rio et al., 2022). In addition to

bottlenose dolphins, individually distinctive SW have been identified and described for eight other delphinid species

(Rio, 2023a), namely: Indo-Pacific bottlenose dolphins (Tursiops aduncus; Gridley et al., 2014), spinner

dolphins (Stenella longirostris; Rio, 2023a), common dolphins (Delphinus delphis; Caldwell & Caldwell, 1968;

Fearey et al., 2019), Atlantic spotted dolphins (Stenella frontalis; Caldwell & Caldwell, 1970), Pacific white-sided

dolphins (Sagmatias obliquidens; Caldwell et al., 1973), Atlantic white-sided dolphins (Lagenorhynchus acutus;

Cones et al., 2023), Pacific humpback dolphins (Sousa chinensis; van Parijs & Corkeron, 2001), and Guiana dolphins

(Sotalia guianensis; de Figueiredo & Simão, 2009).

Knowledge about SW remains limited primarily due to the challenges in assessing certain cetacean species. This

is the case for false killer whales (Pseudorca crassidens), who mostly live in deep waters (Rio, 2023b). False killer
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whales are known to mostly emit relatively short-duration, low-frequency, and flat whistles that show a markedly

narrow frequency range, sometimes with only a difference of 1.1 kHz (Murray et al., 1998; Oswald et al., 2003;

Rio, 2023b; Thode et al., 2016; Weir et al., 2013).

The status of false killer whales according to the International Union for the Conservation of Nature (IUCN) is

Near Threatened (Baird et al., 2018). Knowing a given species' individual recognition mechanisms is critical to under-

standing its cognitive abilities, vocal learning process and social structure, which it is highly relevant to cetacean con-

servation. Accordingly, the present study is the first to provide acoustic evidence that false killer whales produce

stereotyped whistle contour types.

Acoustic recordings were obtained opportunistically from a coastal/inshore false killer whale group, living sea-

sonally in Mexican Pacific waters, close to La Paz Bay (Figure 1) in the southwestern Gulf of California (Blanco-Jarvio

et al., 2023). On April 10, 2023, a group of approximately 20 individuals, known to have been previously photo-

graphed in the same area (Figure 2) was sighted from a boat (with engines off). The group maintained constant swim-

ming speed and direction (approximately 8 km/hr, heading west), traveling compactly. Although some individuals

briefly separated from the group, to pass close the boat and the hydrophone, they immediately regrouped and dis-

played the same behavioral pattern. Underwater recordings were made with a SQ26-08 hydrophone (frequency

range from 20 Hz to 50 kHz, and effective sensitivity of �169 dB, re 1 V/μPa; Cetacean Research Technology,

Golden, CO). The device was placed 5 m below the surface; it was connected to a Zoom H1n digital recorder.

Recordings were carried out at a 48-kHz sampling rate and 16-bit resolution.

Acoustic analysis was carried out according to the methodology by Rio et al. (2022). All whistles with good

signal-to-noise (SNR) ratio, as well as complete and clear spectral contours, were first visually and aurally identified;

then, they were manually selected for analysis purposes. Spectrograms were plotted in spectrogram view in Raven

F IGURE 1 Sightings and vocal recordings of false killer whales (Pseudorca crassidens) in La Paz Bay (LPB), Gulf of
California, Mexico: the green circle highlights the location of the sighting/recording carried out on April 10, 2023.

The yellow circle is the location of the sighting/recording performed on July 14, 2022.
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Pro 1.6.1 at 1,024 Fast Fourier Transform (FFT), Hanning window, and 50% overlap. Spectral and temporal

parameters were extracted: start (StaF), end (EndF), minimum (MinF) and maximum (MaxF) frequency, bandwidth

(BanF), duration (Dur), interwhistle intervals (IWI), and number of inflection points (InfP).

Whistles with stable contours that have occurred repeatedly were classified as stereotyped whistles (STW). The

remaining whistles, with varying contours, were classified as nonstereotyped whistles (NSW). The whistle emission

sequence, and its IWI, were analyzed through the SIGnature IDentification (SIGID) method (Janik et al., 2013); possi-

ble signature whistles (PSW) were identified based on STW categories, with at least four whistles. Therefore, if one

or more of the whistles occurred during the sequential bout analysis (75%), within 1–10 s of another whistle, it

would be considered as the PSW type (Janik et al., 2013). Whistle classification was made by one experienced

observer. All STW that did not pass the SIGID and NTW criteria were defined as non-SWs for the analysis.

Ten naïve independent observers (veterinary medical students), who had no previous experience with bioacous-

tics experiments, assessed a randomly chosen data subset to confirm the reliable identification of different PSW

types. Each observer received five randomly chosen examples of all identified PSW types (n = 8; Cones et al., 2023;

Janik, 1999; Sayigh et al., 2007). They were instructed to split them into groups of five, based on contour similarity;

no further guidance was given.

In addition, the first author of this publication (R.R.), who created the STW catalog and classified the PSWs,

selected three STW samples that were extracted from audio of underwater footage (GoPro Hero 7; 48-kHz sample

rate and 16-bit resolution; in total, 64.5% (125/188) of whistles recorded within 4.3 min were classified as STW) that

was recorded on July 14, 2022, for a short-term whistle stability assessment. These STW samples belonged to the

group comprising some of the same individuals (confirmed dorsal fins Photo ID; Figure 2). They were also compared

by naïve observers to identify the PSW types of false killer whales.

Descriptive statistical approach was applied to all frequency and temporal parameters. Emission rate was calcu-

lated by dividing the number of whistles by the number of minutes within the recorded whistle-time, which was

defined as the time interval between the first and last registered acoustic signal (clicks or whistles).

In total, 410 whistles were extracted from the recorded whistle-time (10.1 min), and it led to emission rate of

40.6 whistles/min. Out of the 410 whistles, 69.0% (283) were classified as STW, 44.9% of them (127) met the SIGID

bout criteria for bottlenose dolphin SW, and thus were classified as PSW. These repeated call types represented

F IGURE 2 False killer whales (Pseudorca crassidens) that were recaptured between the two sightings in La Paz
Bay, Gulf of California, Mexico. In the top row, one finds individuals photographed on July 14, 2022; in the bottom
row, one finds the same individuals photographed on April 10, 2023. The yellow circles indicate the notches
confirming the recapture; they are the same animals.
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31.0% (127/410) of all analyzed whistles, which were, subsequently, categorized into one of the eight PSW types.

Figure 3 shows the spectrograms of all identified PSW types.

Temporal and spectral parameters recorded for each PSW type are displayed in Table 1. The number of samples

per PSW type ranged from eight (PSW2 and PSW5) to 38 (PSW1). The recorded frequency parameters have shown

mean MinF and MaxF of 2.54 ± 0.47 kHz (mean ± standard deviation) (PSW6), and 10.56 ± 0.20 kHz (PSW7),

respectively. Whistle duration (Dur) has shown mean values ranging from 0.47 ± 0.05 s (PSW2) to 1.04 ± 0.11 s

(PSW4), with pooled mean value of 0.77 ± 0.20 kHz, for all PSW types.

The visual task showed a perfect match (100%) to the adopted classification created by the first author of the

present publication (R.R.). Moreover, the three STW samples extracted from July 14, 2022, showed 100% overlap

with two PSW types (two whistle samples with PSW5 and one with PSW7), and this is reinforced by the presence of

shared individuals in both sightings. This finding is also consistent with the author's classifications.

In this study, we have shown the existence of stereotyped whistles in false killer whales in the Gulf of California.

While we believe these may be SWs, we use the term “possible signature whistles (PSWs)” because the small acous-

tic data set does not allow us to rule out the possibility that the stereotyped acoustic signals identified were shared,

repeated call types. Moreover, the SIGID method was developed for bottlenose dolphins; therefore, direct compari-

sons between these dolphins and false killer whales must consider the specificities of each species. Accordingly, false

killer whale whistles are overall less complex in comparison to bottlenose dolphins (Thode et al., 2016; Weir

et al., 2013), and this could affect the information conveyed through SW and their visual identification by human

beings. False killer whale's behavior of congregating in many small subgroups, spread out over kilometers could also

change the SW rate. However, there was always a seaplane flying in the area adjacent to the sightings during both

encounters (15-km radius); in both cases, there was no record of other groups of false killer whales or other toothed

whales present. Occasionally, false killer whales were observed accelerating and jumping out of the water, during the

F IGURE 3 Examples of whistle spectrograms of eight identified possible signature whistle (PSW) types (PSW1,
PSW2, PSW3, PSW4, PSW5, PSW6, PSW7, and PSW8) emitted by a “Gulf of California population” of false killer
whales (Pseudorca crassidens) living close to La Paz Bay, Mexico, according to the SIGID method. Frequency (kHz) is
on the y-axis; it ranged from 0 to 15 kHz. Time (s) is on the x-axis. Scaling was the same for all items. Spectrogram
settings: Fast Fourier Transform size = 1,024, Hanning window, overlap = 50%. The PSW number at the top of each
panel represents the identified number for each PSW type.
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present study; however, it is unclear if they were feeding. This could be important to know, because such factors

(e.g., environmental, social, behavioral, genetic, or cultural aspects) can increase acoustic emission rates and, conse-

quently, SW production and rates (May-Collado & Wartzok, 2008; Quick & Janik, 2008). When dolphins are isolated

from their conspecifics, for example, the SW rate in their acoustic repertoire can reach up to 100%

(Caldwell et al., 1990; Janik & Slater, 1998; Sayigh et al., 2007).

Based on our results, we suggest that at least one third (31.0%) of coastal false killer whale whistles produced by

free-ranging animals from La Paz Bay, Gulf of California, could be PSW. This could even be higher, if one takes into

consideration that SIGID is a conservative criterion with success rate of 50%, and no possibility of showing false pos-

itives (Janik et al., 2013). This percentage may range from 38% to 70% among free-swimming bottlenose dolphins

(Buckstaff, 2004; Cook et al., 2004; Janik & Sayigh, 2013; Watwood et al., 2005), which belong to the most assessed

dolphin species.

The visual similarity in value judgment by naïve external observers has confirmed the herein adopted PSW clas-

sification type, with perfect overlap; this finding suggested short-term whistle stability for false killer whale PSW.

Overall, mean values recorded for whistle temporal and frequency parameters of false killer whales (non-SW,

STW, and PSW) from the Mexican Pacific are similar to bioacoustics data observed in the few studies available in the

literature about this species' vocalizations (Oswald et al., 2003, 2007; Rio, 2023b; Weir et al., 2013). False killer

whales often produce relatively short-duration, little-modulation, low-frequency whistles (4–10 kHz), at markedly

narrow frequency range (BandF; Murray et al., 1998; Oswald et al., 2003; Rio, 2023b; Thode et al., 2016;

Weir et al., 2013).

It is important to continuously monitor the acoustics of this false killer whale population, in Mexico and other

locations, to confirm our results and deepen knowledge about this species' individual recognition, cognitive skills,

long-term stability, and other interesting SW aspects. Moreover, research about the individual recognition skills of

these animals could provide valuable information for the yet limited understanding of this species' social structure

(Kratofil et al., 2020; Martien et al., 2019), in La Paz Bay, especially because recent genetic evidence shows unique

haplotypes for this population (Blanco-Jarvio et al., 2023).
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